报告题目:Waldhausen category structure on Grothendieck constructions
报告人:狄振兴 教授 华侨大学
邀请人:李欢欢
报告时间:2023年9月15日(周五)14:30
报告地点:腾讯会议551-996-814
报告人简介:狄振兴,现为华侨大学教授,硕士生导师。主要从事环的同调理论与代数表示理论的研究工作。主持国家自然科学基金青年基金项目和面上项目。迄今在《Proceedings of the Royal Society of Edinburgh Section A: Mathematics》、《Journal of Algebra》、《Journal of Pure and Applied Algebra》等刊物发表论文二十余篇。
报告摘要:Given a strict functor D: I → WaldCat, where I is a Waldhausen category and WaldCat denotes the meta 2-category of Waldhausen categories, we show that the Grothendieck construction ∫D inherits naturally a Waldhausen category structure. If I and all Di satisfy the saturation axiom, then we show that ∫D satisfies the saturation axiom as well. Let G : I → J be an exact functor between Waldhausen categories and F: J → WaldCat another strict functor. Under some mild conditions, we show that G induces an exact functor Φ: ∫D → ∫F such that G satisfies the approximation property if and only if Φ does so.
主办单位:williamhill威廉希尔官网