2022威廉希尔
非线性分析、微分方程与动力系统系列报告
8月28日 19:00-22:00 腾讯会议号:473 324 177 |
时间 |
报告人 |
Title |
邀请人 |
19:00-19:40 |
张国宝 |
Traveling wavefronts for two delay models of the Belousov–Zhabotinskiireaction |
吴事良 李燕 |
19:40-20:20 |
韩帮胜 |
Spatial dynamics in nonlocalreaction-diffusion equation |
20:20-21:00 |
郭宏骏 |
Qualitative properties of pushed fronts of reaction-diffusion-advection equations |
21:00-21:40 |
杜丽君 |
Propagation phenomena of reaction diffusion-advection systems in periodic media |
本期组织:吴事良、李燕
主办单位:williamhill威廉希尔官网
基金资助:国家自然科学基金、陕西省杰出青年科学基金
联系人: 吴事良 手机:18392190403 E-mail: slwu@xidian.edu.cn
李 燕 手机:18700410622 E-mail:yanli@xidian.edu.cn
报告信息
(以姓氏拼音为序)
Propagation Phenomena of Reaction-Diffusion-Advection Systems in Periodic Media
杜丽君 长安大学
摘要:We give in this talk some works concerning propagation phenomena of reaction-diffusion-advection systems in periodic media. Firstly, we present some results on propagation phenomena of two-species competition systems in spatially or temporally periodic media. Then, we focus our attention on the more general monotone semiflows in time-space periodic environment. Under some abstract settings, we establish some abstract theory on spreading speeds and traveling waves for time-space periodic monotone semiflows in the space of vector-valued functions on R^N. For an application, we study the spreading speeds and traveling waves of a time-space periodic cooperative system posed in multidimensional media.
报告人简介:杜丽君,博士,中共党员,长安大学理学院讲师。2020年毕业于兰州大学,导师为李万同教授。研究方向为微分方程与动力系统,主要结果发表在JFA、JDE、ZAMP、NARWA、MBE等期刊。目前主持陕西省自然科学基础研究青年项目一项,长安大学中央高校优秀博士毕业生项目一项。
Qualitative properties of pushed fronts of reaction-diffusion-advection equations
郭宏骏 同济大学
摘要:In this talk, we prove some qualitative properties of pushed fronts for the periodic reaction-diffusion-equation with general monostable nonlinearities. Especially, we prove the exponential behavior of pushed fronts when they are approaching their unstable state. Through this property, we also prove the stability of pushed fronts.
报告人简介:郭宏骏,现为同济大学特聘研究员。2012年本科毕业于兰州大学隆基班,2015年硕士毕业于兰州大学,师从李万同教授。2018年毕业于法国艾克斯马赛大学,师从Francois Hamel教授,2018-2019年在迈阿密大学从事博士后研究,2019-2020年在怀俄明大学从事博士后研究。目前已在Math.Ann.,J.Math. Pures Appl.,Calc. Var. PDE等国际重要期刊发表SCI论文若干。
Spatial Dynamics in Nonlocalreaction-diffusion equation
韩帮胜 西南交通大学
摘要:In this talk, we discuss the spatial dynamics of a reaction diffusion equation with nonlocal terms. Firstly, we prove that there exists traveling wave solutions of the equation connecting equilibrium 0 to some unknown positive steady state for wave speed c > c∗ and there is no such traveling wave solutions for c < c∗. Furthermore, we also demonstrate the unknown steady state just is the positive equilibrium. Finally, we research the Turing patterns and the well-posedness for the corresponding Cauchy problem.
报告人简介:韩帮胜,现任西南交通大学数学学院副教授, 硕士研究生导师。其研究方向是微分方程与动力系统,具体研究非局部反应扩散方程的空间动力学行为。目前已在《International Journal of Bifurcation and Chaos》、《Discrete and Continuous Dynamical Systems-Series B》、《Nonlinear Analysis Real World Applications》等知名SCI期刊上发表论文18余篇, 其中入选ESI热点论文1篇,ESI高被引论文3篇。主持完成国家自然基金青年基金1项,正在主持四川省自然基金1项。
Traveling wavefronts for two delay models of the
Belousov–Zhabotinskiireaction
张国宝 西北师范大学
摘要:In this talk, I will report the traveling wavefronts for two delay models of the Belousov–Zhabotinskiireaction. For the model with discrete delay,I first show the precisely asymptotic behavior of monostable traveling wavefronts, then give the uniqueness of the traveling wavefronts, which complements the uniqueness results obtained by Trofimchuk et al. For the model with nonlocal delay, I first derive the existence of monostable traveling wavefronts, and then establish the exponential stability of traveling wavefronts with large speed.
报告人简介:张国宝,西北师范大学williamhill威廉希尔官网教授,博士生导师。2011年在兰州大学获得理学博士学位。2012年10月-2015年10月在西北师范大学数学博士后流动站做博士后。2018年4月-2019年3月在加拿大纽芬兰纪念大学做博士后。现为美国《Math. Review》评论员和德国《Zentralblatt MATH》评论员。
主要研究方向为微分方程及其应用。主持国家自然科学基金3项,省部级基金5项;获甘肃省自然科学奖一等奖一项,甘肃省高校科技进步奖一等奖2项;发表学术论文40余篇,其中多篇论文发表在国际、国内权威杂志《Calculus of Variations and PDE》、《J.Differential Equations》、《Z. Angew. Math. Phys.》、《Discrete Contin. Dyn. Syst. A&B》、《Nonlinear Anal. RWA.》、《Nonlinear Anal.》、《J. Math. Anal. Appl.》、《J. Comput. Appl. Math.》和《Sci. China Math.》。