学术报告

学术报告

您当前所在位置: 首页 > 学术报告 > 正文
报告时间 2021年7月14日8:30-11:30 报告地点 腾讯会议ID:275 616 367
报告人 邹幸福

报告题目:Convergent map dynamics and harmlessness of delay in some delay differential equations

报告人:邹幸福 教授 加拿大西安大略大学

邀请人:白振国

报告时间:2021年7月14日(周三)8:30-11:30

腾讯会议ID:275 616 367

报告人简介:邹幸福教授分别在中山大学,湖南大学和约克大学(York University,Canada)获得学士,硕士和博士学位,并在维多利亚大学(University of Victoria, Canada)和佐治亚理工(Georgia Institute of Technology, USA)从事过博士后研究工作。曾任教于加拿大纽芬兰纪念大学(Memorial University of Newfoundland, Canada),现为加拿大西安大略大学(University of Western Ontario)数学系教授。研究兴趣为微分方程和动力系统的理论及应用,特别是反应扩散方程、常泛函微分方程及偏泛函微分方程及其在生物领域的应用.

报告摘要:Competition for resources is a fundamental topic in theoretical ecology.Many population models are described by delay differential equations, where the delay can be maturation delay or other type of delays. Often a delay will destroy the stability of an equilibrium through Hopf bifurcation, causing sustained oscillations (periodic solutions). However, there are also DDEs for whichthe delay is harmless in the sense that delay will not affect the stability of an equilibrium. In this talk, I will report some results on how harmlessness of a delay is related to the convergent dynamics of the map representing the nonlinearity in a DDE. This is done through exploring the dynamics ofsome reaction diffusion equations by the dynamical system approach.

 

主办单位:williamhill威廉希尔官网

上一篇:关于论文写作的思考

下一篇:运筹学–组合优化的模型理论算法

关闭