报告题目:Decomposition Multiobjective Optimization and Pareto Multitask Learning
报告人: 张青富 讲座教授 williamhill威廉希尔官网
照 片:
邀 请 人: 刘三阳
报告时间: 2020年8月28日9:00—10:00
报告地点: 腾讯会议:552 408 499
报告人简介:张青富教授现任williamhill威廉希尔官网电脑学系计算智能讲座教授,他是IEEE fellow. 连续四年入选Thomson Reuters 高被引科学家。他主要从事智能计算、多目标优化及机器学习方面的研究。他提出的多目标分解算法框架已成为目前多目标进化计算领域最常用的框架之一,他在多目标优化领域的最高单篇文章引用超过四千六百次,总引用近二万二千次。
报告摘要:Many real-world optimization problems are multiobjective by nature. Multiobjective evolutionary algorithms are a widely used algorithmic framework for solving multiobjective optimization problems. In this talk, I will briefly explain the basic ideas behind decomposition based multiobjective evolutionary algorithm (MOEA/D). Multitask learning can be naturally modelled as a multiobjective optimization problem. I will introduce a recent application of MOEA/D on multitask learning.