新闻公告

您当前所在位置: 首页 > 新闻公告 > 通知公告 > 正文

报告题目:More dynamical properties revealed in a 3D chaotic system

报告人:李先义教授(扬州大学)

邀请人:刘丹副教授

报告时间:2015年11月2日14:30--15:30

报告地点:信远楼II206williamhill威廉希尔官网报告厅

报告人简介:扬州大学教授,博导;华东师范大学应用数学专业博士,法国里尔科技大学数学系博士后。研究方向:常微分方程与动力系统;主要兴趣:稳定性理论、分支与混沌理论。

至今在欧美Nonlinear Dyn., IJBC, JMAA, CMA等著名期刊发表科研论文近60篇,在国家核心期刊科学通报等上面发表科研论文10多篇;论文至今已被SCI收录44篇,EI收录20篇;主持包括国家自然科学基金面上项目、数学天元基金、国家留学基金等各级各类科研项目等21项。曾先后被评为“湖南省青年骨干教师”、“湖南省新世纪‘121’人才工程”人选、“湖南省学科带头人”、“广东省‘千百十’人才工程省级培养对象”等,获“湖南省高校科技工作先进工作者”、“上海市研究生优秀成果(博士论文)”、“全国第三届‘秦元勋常微分方程奖’”等科研奖励、荣誉10多项。担任四个国际期刊的主编、副主编、荣誉编委、编委,IJBC, JMAA, Nonlinear Dynamics等40余种科研期刊的审稿专家,以及中国博士后科学基金面上项目、多种自然科学基金等方面的评审专家。

报告摘要:After a 3D Lorenz--like system has been revisited, its more rich dynamics hiding and not found previously are clearly revealed. Some more precise mathematical work, such as for the complete distribution and the local stability and bifurcation of its equilibrium points, the existence of singularly degenerate heteroclinic cycles and homoclinic and heteroclinic orbits, and the dynamics at infinity, is carried out in this paper. In particular, another possible new mechanism behind the creation of chaotic attractors is presented. Based on this mechanism, some different structure types of chaotic attractors are numerically found in the case of small b>0.

All theoretical results obtained are further illustrated by numerical simulations. What we formulate in this paper not only is to show those dynamical properties hiding in this system, but also ( more mainly) presents a kind of way and means --both ``locally and ``globally and both ``finitely and ``infinitely--to comprehensively explore a given system.

上一篇:“数学巡礼月”征文活动通知

下一篇:williamhill威廉希尔官网—博士学位研究生申请考核制实施方案

关闭